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Abstract. Cancer is one of the fatal threats to human beings. However,
early detection and diagnosis can significantly reduce death risk, in which
cytology classification is indispensable. Researchers have proposed many
deep learning-based methods for automated cancer diagnosis. Neverthe-
less, due to the similarity of pathological features in cytology images
and the scarcity of high-quality datasets, neither the limited accuracy of
single networks nor the complex architectures of ensemble methods can
meet practical application needs. To address the issue, we propose a pu-
rified Stacking ensemble framework, which employs three homogeneous
convolutional neural networks (CNNs) as base learners and integrates
their outputs to generate a new dataset by a k-fold split and concate-
nation strategy. Then a distance weighted voting technique is applied
to purify the dataset, on which a multinomial logistic regression model
with a designed loss function is trained as the meta-learner and performs
the final predictions. The method is evaluated on the FNAC, Ascites,
and SIPaKMeD datasets, achieving accuracies of 99.85%, 99.24%, and
99.75%, respectively. The experimental results outperform the current
state-of-the-art (SOTA) methods, demonstrating its potential for reduc-
ing screening workload and helping pathologists detect cancer.

Keywords: Cytology classification · Ensemble learning · Stacking.

1 Introduction

Cytology is a branch of pathology to study cells under microscopes to analyze
the cellular morphology and compositions, usually for cancer screening [1]. Com-
pared with histopathology, cytology focuses on the pathological characteristics
of cells instead of tissues, which is a collection of thousands of cells in a specific
architecture [2].

Cytology classification plays a vital role in cancer screening and early diag-
nosis. However, it is a complex and massive undertaking, which requires pathol-
ogists to sift through thousands of cells to identify problematic cells. In recent
years, many computer-aided diagnostic methods based on deep learning have
made significant breakthroughs. However, these models often fail to achieve satis-
factory accuracy due to the high similarity between cytology images (e.g., Fig. 1)
and low quality of datasets (e.g., Imbalanced distribution and limited number).
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Fig. 1. Examples of two confusable classes in cervical cytology. The two on the left are
metaplastic cells, and the two on the right are parabasal cells.

Currently, the commonly used approaches include single networks and ensemble
methods. The former makes it easier to misclassify similar image features, caus-
ing relatively limited accuracy. The latter have complex architectures, resulting
in more parameters and slower inference speeds. The ensemble framework can
also propagate errors and noise during the learning process, making it more
prone to overfitting.

To address the issues, we propose a purified Stacking ensemble framework
for cytology classification. Initially, data preprocessing is performed to increase
the size of datasets and enhance image features. Then, we feed them into three
homogeneous models (each pre-trained on the ImageNet dataset), which serve
as base learners. Those models have similar architecture and can better learn
certain image features while reducing the number of parameters. The outputs of
the base learners are aggregated to generate a new dataset with a k-fold split and
concatenation strategy, which mitigates the problem of overfitting. Next, we use
a distance weighted voting strategy to purify the dataset, focusing on preserving
confusable image features for relearning. Finally, we apply the purified dataset
to train a multinomial logistic regression (MLR) model with a designed adaptive
weighted softmax loss function, which can further improve the performance. The
trained MLR model is utilized for the final prediction.

The contributions of this paper are as follows:

(1) We propose a novel k-fold split and concatenation (KFSC) strategy, com-
bining k-fold cross-validation with the Stacking method to generate a more di-
verse dataset and effectively address the overfitting issue.

(2) We design a purification method termed distance weighted voting (DW-
Voting) that uses an elaborate voting strategy to filter the newly generated
dataset and makes the meta-learner focus on the features of misclassified sam-
ples.

(3) We devise an adaptive weighted softmax loss (AW-Softmax) function,
which automatically adjusts the weights based on the meta-learner’s performance
and further enhances the overall framework’s robustness.

(4) We conduct experiments on various CNN architectures, and the results
demonstrate that the proposed framework significantly improves classification
accuracy with fewer parameters and faster inference speed. Furthermore, we
evaluate the proposed method on three public cytology datasets using a range
of metrics, and the results outperform state-of-the-art (SOTA) methods.
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2 Related Work

2.1 Cell-level Classification

Cell-level classification could be one of the most successful tasks in deep learning-
based cytology image analysis [3]. Due to the giga-pixel resolution of collected
cytology whole slide images, scholars often crop them into cell patches and use
them for training cell classification models [4]. The most common method is to
directly feed cell patches into a multi-layer CNN to extract feature maps, then
cross the output layer to get the predicted category. Based on this, a series of
CNN-based methods have been proposed.

For lung cytology classification, Teramoto et al. [5] introduced a deep con-
volutional neural network (DCNN) to automatize the classification of malignant
lung cells from microscopic images, and it reached a performance comparable
to that of a cytopathologist. For cervical cytology classification, previous clas-
sification methods are only built upon extracting hand-crafted features, such
as morphology and texture. Zhang et al. [6] designed a CNN called DeepPap
to directly classify cervical cells without prior segmentation-based on deep fea-
tures, which reached a high accuracy when evaluated on both the Pap smear
and LBC datasets. In addition, Tripathi et al. [7] presented deep learning classi-
fication methods applied to the Pap smear dataset to establish a reference point
for assessing forthcoming classification techniques. These studies demonstrated
the substantial clinical value of classification-assisted cytology image analysis.
However, the lack of high-quality datasets and the similarity of cell morphology
also pose great challenges to cell-level classification.

2.2 Ensemble Learning

An individual model is limited by its architecture, and there is always an up-
per bound (i.e., Bayes error) which makes it increasingly difficult to improve
the performance currently. Ensemble learning is an alternative solution to the
problem, combining multiple models to achieve better predictive performance
by taking advantage of the strengths of each model and compensating for their
weaknesses [8].

For breast cytology classification, Ghiasi et al. [9] proposed a decision tree-
based ensemble learning framework. They evaluated it on Wisconsin Breast Can-
cer Database (WBCD) and achieved satisfactory accuracy. For cervical cytology
classification, Manna et al. [10] proposed an ensemble scheme that used a fuzzy
rank-based fusion of classifiers by considering two non-linear functions on the
decision scores generated by base learners. The proposed framework achieved the
highest accuracy on the SIPaKMeD and Mendeley datasets. Although these en-
semble methods have achieved excellent performance, certain models within the
framework may be influenced by image noise, and the ensemble may propagate
these errors, resulting in incorrect predictions.
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Fig. 2. The overall workflow of the purified Stacking ensemble, where KFSC repre-
sents k-fold split and concatenation, DW-Voting represents distance weighted voting
and MLR with AW-Softmax represents multinomial logistic regression model with
adaptive weighted softmax loss function.

3 Method

The proposed method is based on the Stacking ensemble strategy [11], which
trains the base learners on the initial dataset and uses the outputs of these base
learners to train the meta-learner. We can divide it into four stages. The first
stage is data preprocessing, which includes resizing and data augmentation. The
second stage is the fusion of base learners, where three homogeneous models
extract features from cellular images. We design a k-fold split and concatenation
strategy for aggregating their outputs to generate a new dataset in prepara-
tion for the next stage. The third stage focuses on purification, where we use a
designed voting filter to sift the newly generated dataset and obtain the meta-
dataset. In the last stage, we apply a multinomial logistic regression (MLR)
model with a designed loss function to relearn and make the final prediction.
An illustration of the complete workflow can be seen in Fig. 2, which will be
explained in detail below.

3.1 Data Preprocessing

In the data preprocessing stage, we first uniformly resize the images to fit dif-
ferent inputs of network architectures (e.g., 224×224 pixels for ResNet). Con-
sidering the limited number of images in cytology datasets, we employ data
augmentation techniques.

Since each cell patch is cropped from a large image slide, resizing and trans-
lation operations may result in the loss of image features. To mitigate this, we
employ rotation and flipping methods. For each cellular image, we perform one
full rotation, rotating it by 20 degrees each time. Additionally, we apply horizon-
tal flipping and vertical flipping. This augmentation process effectively increases
the size of the dataset by a factor of 20.

3.2 Fusion with KFSC

The main task of the second stage is to train multiple base learners and generate
a new dataset based on their outputs. Suppose we directly use the initial dataset
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to construct the target dataset. In this case, there is a risk of overfitting, where
the meta-learner becomes too specific to the initial dataset and fails to generalize
well to new data.

To avoid the above issues, we propose a novel k-fold split and validation
(KFSC) strategy to obtain multiple dataset partitions and generate a more di-
verse and representative dataset. The pipeline is illustrated in Fig. 3.
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Fig. 3. An overview of k-fold split and concatenation.

Firstly, the dataset is divided into a training set D and a testing set D̃.
When implementing k-fold cross-validation, the initial training set is divided into
k subsets of similar size, denoted as D1, D2, · · · , Dk. Let Di and Di = D\Di

represent the validation set and the training set for the i-th fold, respectively.
We train T base learners M1,M2, · · · ,MT on Di and then validate them on Di.

During the i-th round of training, each base learner is trained on the training
setDi to obtain the corresponding classifier Cj = Mj(Di), j ∈ {1, 2, · · · , T}. The
results obtained on the validation set Di are denoted as follows:

D′
ij = Cj(Di), j ∈ {1, 2, · · · , T} (1)

By horizontally concatenating the results, the training set split generated in
the i-th round is denoted as follows:

D′
i = (D′

i1, D
′
i2, · · · , D′

iT ) (2)

To obtain the final training set, we can vertically concatenate the training
splits from each round, which is denoted as follows:

D′ = (D′
1;D

′
2; · · · ;D′

k) (3)

It is evident that the generated training set has the same dimensionality along
the x-axis as the original training set, which means the number of generated
samples remains the same.

The process of generating the new testing set is similar. During the i-th
round, the results of each classifier on the testing set D̃ are defined as follows:

D̃′
ij = Cj(D̃), j ∈ {1, 2, · · · , T} (4)
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To maintain consistency in dimensionality, we need to average the testing
results of each classifier, so the j-th testing set split is denoted as follows:

D̃′
j =

1

k

∑k

i=1
D̃′

ij (5)

The complete testing set can be obtained by horizontally concatenating the
testing set splits, which is denoted as follows:

D̃′ = (D̃1, D̃2, · · · , D̃T ) (6)

Finally, we obtain the new training set D′ and the new testing set D̃′ to
prepare for the training and testing of the meta-learner in the last stage.

3.3 Purification with DW-Voting

During the third stage, we filter the new dataset to generate the final meta-
dataset for the meta-learner (e.g., Fig. 4). Instead of employing the complete
data, we sift and retain the misclassified samples. In other words, we introduce a
new concept called purity, which refers to the proportion of misclassified samples
in a dataset. The purpose of filtering is to enhance the diversity of the dataset and
make the meta-learner focus on the confusable features. By excluding correctly
classified samples, we can reduce potential interference and improve the final
accuracy. Besides, it significantly reduces the size of the dataset, which can
accelerate the training and testing of the meta-learner.

DW-Voting

Wrong prediction

 Correct prediction

Ground truth

Fig. 4. Visualization of purification. It aims to remove (represented by ×) correct
predictions while retaining wrong predictions (namely confusable futures), allowing
the meta-learner to relearn. The purifying criterion is based on the distance between
prediction and ground truth, measured by the DW-Voting strategy.

Taking the purification of the training set as an example, we define the newly
generated training set as D′ = {(Xi, yi)|mi=1)}, and Xi is defined as follows:

Xi = (Pi1, Pi2, · · · , PiT ) (7)
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where Pij represents the probability vector generated by the j-th classifier for
the i-th image, and it can be expanded as follows:

Pij = (C1
j (xi), C

2
j (xi), · · · , Cc

j (xi)),

c∑
k=1

Ck
j (xi) = 1 (8)

where Ck
j (xi) represents the probability corresponding to the k-th class assigned

by classifier Cj for the i-th image xi.
Here we propose a distance weighted voting filter technique. Given the one-

hot label encoding Ti of the i-th image, we can calculate the distance between
the probability vector Pij and the ground truth Ti for each classifier:

Ti = (· · · , 0, · · · , 1, · · · , 0, · · · ), Tiyi
= 1

dij =
√

(Pij − Ti)2
(9)

The distance indirectly reflects the performance of the classifier. When the
distance is smaller, it indicates that the predicted value is closer to the true
label. Therefore, in the subsequent voting process, the weight of this classifier
should be appropriately increased. We can calculate the proportion of each clas-
sifier’s distance rij and then obtain the corresponding weight wij based on the
proportion:

rij =
dij

T∑
k=1

dik

wij =
1− rij
T − 1

,

T∑
j=1

wij = 1 (10)

The final predicted value can be calculated through weighted sum:

Pi =

T∑
j=1

wijPij = (

T∑
j=1

wijC
1
j (xi),

T∑
j=1

wijC
2
j (xi), · · · ,

T∑
j=1

wijC
c
j (xi))

ŷi = argmax(Pi)

(11)

After filtering the samples whose predicted label matches with the ground
truth, we can obtain a purified meta-training set for the relearning of the meta-
learner:

D′ = {(Xi, yi)|m
′

i=1)}, ŷi ̸= yi (12)

The purification of the testing set follows the same process as described above.
It is important to note that the samples filtered by DW-Voting in the testing set
are considered successfully predicted by the ensemble of base learners. Hence,
the meta-learner in the testing phase only needs to focus on the misclassified
samples.

3.4 Relearning with AW-Softmax

To cope with multi-class classification tasks, we adopt multinomial logistic re-
gression (MLR) as the meta-learner. Besides, we design an adaptive weighted
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softmax loss (AW-Softmax) function, of which the principle is to dynamically
adjust the weights based on the performance of each round’s model. The calcu-
lation process of the loss function is as shown in Fig. 5 and will be described in
detail below:

  -th round model n

F1

F2

Fc wc

w2

w1

P1

P2

Pc

!

Loss

Fig. 5. A process of loss calculation for a single image. Firstly, the F1-score vector F
and probability vector P are obtained based on the model. Then, the weight vector W
is derived. Finally, the loss of the image is calculated through the weighted sum.

For meta-training dataset D′ = {(Xi, yi)|m
′

i=1}, each class r ∈ {1, 2, · · · , c}
has a corresponding weight vector ar (namely the parameters of the model).
The probability of sample Xi belonging to class r can be calculated as follows:

P (r|Xi) = softmax(ar · Xi) =
exp (ar · Xi)
c∑

j=1

exp (aj · Xi)
(13)

So the final predicted probability vector of the meta-learner for sample Xi

can be represented as follows:

Pi = (P(1|Xi),P(2|Xi), · · · ,P(c|Xi)) (14)

Based on this, we define the loss function Lj in the the j-th training round
as follows:

Lj = −
m′∑
i=1

logPi · Wj (15)

where Wj represents the weight vector, which can be recursively derived.
Suppose the weight vector for the previous round is defined as Wj−1 =

(w1, w2, · · · , wc)
T. Based on the predictions of each round, we can calculate the

precision P, recall R, and F1-score F for each class r ∈ {1, 2, · · · , c}:

Pr =

n∑
i=1

(yi = r, ŷi = r)

n∑
i=1

(ŷi = r)
Rr =

n∑
i=1

(yi = r, ŷi = r)

n∑
i=1

(yi = r)
Fr =

2× Pr × Rr

Pr +Rr
(16)
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We utilize the F1-score to provide a more comprehensive evaluation of the
model performance, and define the weight vector W with the following formula:

Wj = Z-score(Wj−1 + 1− F)

= Z-score([w1 + 1− F1, w2 + 1− F2, · · · , wc + 1− Fc])
(17)

where Z-score is a standard normalization function to ensure weights sum up
to 1 and prevent overflow. A lower F1-score indicates lower precision and recall,
signifying poorer performance for specific classes. In such cases, it is appropriate
to increase their weights, which shifts the focus of the model towards confusable
features in the next training round.

Besides, for the recursive formula, an initial weight needs to be defined. Given
the uneven distribution of dataset, we define the initial weight W0 based on the
proportion of each class:

W0 = Z-score(1−

m′∑
i=1

(yi = 1)

m′ , 1−

m′∑
i=1

(yi = 2)

m′ , · · · , 1−

m′∑
i=1

(yi = c)

m′ ) (18)

For classes with fewer samples, we increase their weights appropriately so that
the model will not be biased during subsequent training and vice versa. Once the
loss function is determined, the weights can be updated using gradient descent
during learning. The trained meta-learner will be used for the final predictions.

4 Experiments and Analysis

4.1 Datasets

In this paper, we evaluate the proposed method on three publicly available cy-
tology datasets:

1. FNAC Pap Smear dataset for breast cytology classification [12]
2. Ascites Pap Smear dataset for stomach cytology classification [13]
3. SIPaKMeD Pap Smear dataset for cervical cytology classification [14]

Table 1. Detailed description of three public datasets.

Class Index Cell type Number

FNAC (total: 212) 0 Benign —— 99
1 Malignant —— 113

Ascites (total: 7880) 0 Benign Eosinophil granulocyte 30
1 Benign Lymphocyte 200
2 Benign Mesothelial 800
3 Benign Neutrophil granulocyte 150
4 Malignant Determined 6000
5 Malignant Suspicious 700

SIPaKMeD (total: 4049) 0 Normal Superficial-intermediate 831
1 Normal Parabasal 787
2 Abnormal Koilocytotic 825
3 Abnormal Dyskeratotic 813
4 Abnormal Metaplastic 793
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4.2 Experimental Configuration

All the experiments are conducted on GeForce RTX 3080 with TensorFlow deep
learning framework. The configuration of this study is presented in Table 2.
There are two additional points to note: (1) During the training stage of the base
learners, we split 20% part of the training set into a validation set to assist in
selecting the best-performing models. (2) The stratified sampling strategy is used
for all dataset partitioning to address the issue of imbalanced data distributions.

Table 2. The hyperparameters used for experiments.

Hyperparameters Value/Method

Learning Rate 0.0001
Batch Size 16
Epoch 60

Optimizer AdamW
Learning Rate Scheduler ReduceLROnPlateau

Loss AW-Softmax

4.3 Experimental Results on CNN Architectures

Table 3. Experimental results on different CNN architectures.

Model FNAC(%) Ascites(%) SIPaKMeD(%)

VGG13 92.16 90.21 91.24
VGG16 93.17 91.14 92.28
VGG19 93.24 91.86 94.33

Ours with VGG-Ensemble 95.32 93.45 95.12

ResNet50 94.24 91.67 92.45
ResNet101 95.16 92.13 93.24
ResNet152 95.85 92.97 93.65

Ours with ResNet-Ensemble 98.25 94.16 95.19

EfficientNetV2S 95.38 92.64 93.41
EfficientNetV2M 96.01 93.14 94.32
EfficientNetV2L 96.36 93.54 95.23

Ours with EfficientNet-Ensemble 98.84 95.54 97.21

ConvNeXtSmall 95.64 94.75 94.32
ConvNeXtBase 96.32 95.64 94.75
ConvNeXtLarge 97.35 96.19 95.18

Ours with ConvNeXt-Ensemble 99.52 98.87 98.75

Xception 97.45 95.34 96.99
InceptionV3 96.25 95.25 94.86

InceptionResNetV2 97.12 96.32 96.25
Ours with Inception-Ensemble 99.85 99.24 99.75

We conduct a series of experiments using several popular CNN architec-
tures as base learners, including VGG [15], ResNet [16], Inception [17], Efficient-
Net [18], and ConvNeXt [19]. We evaluate the performance of individual models
and ensemble in our proposed framework on three public datasets with the mean
accuracy, and the results are shown in Table 3.

It can be observed that all architectures achieve significant performance im-
provements when combined with our framework. In particular, the Inception-
family models exhibit the best performance, achieving accuracies of 99.85%,
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99.24%, and 99.75% on the FNAC, Ascites, and SIPaKMeD datasets, respec-
tively. Therefore, we will use the three Inception models as our base learners in
subsequent experiments.

4.4 Comparison with Other Methods

In the comparative experiments, we compare our method with some other en-
semble methods. For a more comprehensive comparison, in addition to the four
commonly used classification metrics - accuracy, recall, precision, and F1-score,
we also compare complexities, including the number of parameters (correspond-
ing to spatial complexity) and inference speed (corresponding to time complex-
ity).

Table 4. Comparison with other methods, where P represents the number of param-
eters, S represents inference speed, Acc represents accuracy, Pre represents precision
and Rec represents recall.

Method P(M) S(ms)
FNAC 2-class Ascites 6-class SIPaKMeD 5-class

Acc(%) Pre(%) Rec(%) F1(%) Acc(%) Pre(%) Rec(%) F1(%) Acc(%) Pre(%) Rec(%) F1(%)

DTE [9] 100 20 97.03 97.12 97.08 97.10 96.32 96.28 96.32 96.30 95.74 95.69 95.72 95.70
FRE [10] 105 30 97.42 97.41 97.43 97.42 96.64 96.52 96.75 96.63 96.02 95.87 96.13 96.00
FDE [20] 105 29 97.67 97.45 97.74 97.59 96.82 96.76 96.98 96.87 96.96 96.92 96.97 96.91

EHDLF [23] 118 25 98.12 98.16 98.12 98.14 97.02 97.09 97.05 97.07 97.26 97.27 97.28 97.28
PCA-GWO [24] 112 27 98.21 98.24 98.21 98.22 97.18 97.14 97.16 97.15 97.87 98.56 99.12 98.89

Ours 96 18 99.85 99.86 99.86 99.86 99.24 99.12 99.36 99.24 99.75 99.75 99.76 99.75

The results are shown in Table 4. DTE [9], as an ensemble of machine learning
methods, has fewer parameters and consequently faster inference speed. FRE [10]
and FDE [20] represent ensembles of heterogeneous CNNs, which sacrifice infer-
ence speed for improved accuracy. EHDLF [23] and PCA-GWO [24] both involve
feature fusion, which enhances accuracy at the expense of parameter count. Our
method employs an ensemble of homogeneous CNNs, which has the fewest pa-
rameters compared to other methods. Additionally, we utilize a designed voting
strategy to filter the dataset, significantly reducing inference times. It can be
observed that our method achieved the best results across all metrics on the
three datasets, demonstrating the superiority of the framework.

4.5 Ablation Study

We conduct ablation experiments to evaluate the importance of each component
in the framework, and the results are shown in Table 5, from which several
conclusions can be drawn:

(1) More base learners means better classification accuracy. Utilizing more
classifiers enables deeper learning of features, reducing classification error and
improving accuracy (as shown in rows 1, 2, and 6, with an average increase of
3.06% in accuracy). It is worth noting that when we increase the number of base
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Table 5. Ablation study on the four most important parts of the framework, where ✓
represents selected.

Number of base learners KFSC DW-Voting AW-Softmax
Accuracy(%)

FNAC Ascites SIPaKMeD

1 ✓ ✓ ✓ 97.24 96.15 96.28

2 ✓ ✓ ✓ 97.35 96.51 96.57

3 ✓ ✓ 97.64 96.82 97.02

3 ✓ ✓ 98.25 97.63 98.05

3 ✓ ✓ 99.06 98.53 99.02

3 ✓ ✓ ✓ 99.85 99.24 99.75

learners to 4, the parameter count of the overall framework increases significantly
while the improvement in accuracy is minimal. Therefore, we have limited the
number to 3. (2) Using the KFSC strategy to generate a new dataset can sig-
nificantly enhance the generalization ability, reducing the risk of overfitting and
improving accuracy (as shown in rows 3 and 6, with an average increase of 2.45%
in accuracy). (3) Applying the DW-Voting strategy to filter the dataset increases
the purity of datasets, making the meta-learner focus more on the features of
confusable images, further enhancing classification accuracy (as shown in rows
4 and 6, with an average increase of 1.64% in accuracy). (4) The AW-Softmax
loss function considers the distribution of datasets and the model’s performance
in each round, improving the framework’s robustness and increasing classifica-
tion accuracy (as shown in rows 5 and 6, with an average increase of 0.74% in
accuracy).

5 Conclusion

This paper proposes a purified Stacking ensemble strategy for cytology classi-
fication, mainly consisting of four stages. The first stage is data preprocessing,
which includes resizing and data augmentation. The second stage trains three
homogeneous networks and uses their outputs to generate a new dataset us-
ing a KFSC strategy. The third stage is the implementation of purification, in
which the new dataset is filtered by a DW-Voting method. The last stage fo-
cuses on relearning using an MLR model with AW-Softmax loss function. We
evaluate the proposed method on three benchmark datasets: FNAC (99.85%),
Ascites (99.24%), and SIPaKMeD (99.75%), and achieve better performance in
accuracy, recall, precision, and F1-score than the current SOTA methods. The
experimental results demonstrate that our method can effectively improve the
accuracy of cytology classification and has promising prospects for future appli-
cations in computer-aided diagnostic systems.
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